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ABSTRACT 

Coefficients of the Rankin-Kirchoff (RK) equation are evaluated for Si, Ge, Sn and Pb 
using two procedures. In the temperature range 1700-2500 K the sums of partial pressures of 
E, species present in the saturated vapour are used as issued values of vapour pressure. In the 
Sn and Pb saturated vapours the clusterization is not pronounced and the coefficients of the 
RK equation evaluated by a least-squares optimisation give rise to the successful predictabil- 
ity of the RK equation. It is not the case for Si and Ge. In their saturated vapours the 
presence of E, molecular species is important. For Si and Ge a new procedure for the 
evaluation of the coefficients of the RK equation is proposed. With coefficients optimised by 
the proposed procedure the vapour pressure predictability of the RK equation for Si and Ge 
is improved. With thus optimised coefficients the RK equation may be applied for the 
temperature range of liquid state, i.e., from melting point up to temperatures at which the 
volumetric behaviour of saturated vapour cannot be described successfully by a truncated 
form of the virial equation. 

INTRODUCTION 

The Rankin-Kirchoff vapour pressure equation 

P lnP=cu-T+yT+DlnT (1) 

which represents the temperature dependence of the vapour pressure of a 
pure solid or liquid, is based theoretically on the integration of a form of the 
Clausius-Clapeyron equation 

dlnP L ----=- 
dT RT= 

(2) 

which is accurate when the vapour is perfect and the molar volume of the 
condensed phase is negligible compared to that of the vapour, i.e., at not too 
high values of the vapour pressures. 

The values of the coefficients in eqn. (1) can be evaluated from numerical 
(experimental) values of vapour pressure for a set of temperatures, via the 
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least-squares method. However, for the fourth group elements, the coeffi- 
cients (Y, ,Q, y and D obtained by the linear regression method applied to eqn. 
(1) show that a least-squares optimisation gives limited accuracy in predic- 
ting the vapour pressure of Si and Ge, in the temperature range 1700-2500 
K and at relatively low vapour pressures (0.07-530 Pa for Si and 28-5600 Pa 
for Ge). In the same temperature range, but at much higher saturation 
pressures (19000-16 000 Pa for Sn and 13 000-780000 Pa for Pb), the 
predictability of eqn. (1) with coefficients optimised by the least-squares 
method for Sn and Pb is quite satisfactory. 

In order to improve the unsatisfactory correlation between vapour pres- 
sure and temperature when the coefficients of eqn. (1) optimised via the 
least-squares method are used, attention was focussed to the fact that the 
saturated vapour of these elements, as a mixture of atoms E, and molecular 
species E,, presents the behaviour of a nonideal gas. 

The saturated vapour of all the fourth group elements consists of atoms 
and molecular species with a different number of atoms [l-8]. Clusterization 
of atoms decreases with increasing atomic number; i.e., from C and Si up to 
Pb. Clusterization is highest in C saturated vapour [9]; the contribution to 
the vapour pressure by the species under C, is not negligible up to 4000 K. 
In the temperature range 1700-2500 K, for the above saturation pressures, 
the presence of Si, and Si, species in Si saturated vapour is important [1,2]. 
At these temperatures, the contribution of Ge, to the total vapour pressure is 
negligible [7,8] and in spite of vapour pressures being higher than those of Si 
and Ge, dimer content in the saturated vapours of lead and tin is low 
[3,5-81. Taking all this into account, it should be noted that the vapour 
pressure in the temperature range 1700-2500 K for silicon is a sum of Si,, 
Si, and Si 3 species’ partial pressures and for germanium, tin and lead the 
sum of monomer and dimer partial pressures. 

During the thermodynamic characterization of the vaporization of the 
fourth group elements [lo] the method of evaluation of coefficients in eqn. 
(1) was derived. With these coefficients the issued vapour pressure values can 
be predicted with much better accuracy than if coefficients obtained by the 
least-squares method are used. 

The main contribution to the established procedure for the optimization 
of coefficients of the temperature dependence of vapour pressure is the 
inclusion in the computations of two thermodynamically consistent rela- 
tions. Both these expressions are developed from rigorous thermodynamic 
expressions (third- and second-law expressions for A .H:) on the basis of the 
same statements. In developing these expressions, the Woolley approach was 
used [ll] which implies a description of the volumetric behaviour of a 
mixture consisting of atoms E, and molecular species E,, by a virial equation 
for a real monatomic gas. For low vapour pressures, the Woolley statements 
suggest the use of a virial equation truncated at the second term. Moreover, 
the vapour pressure values used, as the sum of the partial pressure of the 
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species present, are theoretically constrained to fulfil in the physical sense 
any one of the particular equations in the set of equations included in the 
computation. 

The procedure is reliable as CODATA-recommended values for standard 
vaporization enthalpy, spectroscopic values for the standard enthalpy of the 
molecular species E, dissociation, as well as table values for the thermody- 
namic functions (0 = [ -(Gt - Ht)/T]; H: - Hi) of the condensed and 
ideal gas state of E, atoms and the molecular species E, are used. For vapour 
pressure values the sums of the partial pressures of the species present in the 

saturated vapours of these elements were taken 
n 

‘=CPi 

with n = 3 for silicon and n = 2 for other elements. p, was calculated using 
the expression 

p 
1 

= p,, exp TM’@,) - AvK$‘(Ed 
RT (4) 

deduced from the third-law expression (eqn. 12) and pi( i f 1) through the 
expression 

where Kp; represents the constant of equilibrium 

E + ‘E ,+--I 1 (6) 

Kp; was calculated with values for thermodynamic functions of the E, species 
through the expression 

KP, 
= po expAT,‘%) -Ad&?@,) 

RT 

EVALUATION ON THE COEFFICIENTS OF EQUATION (1) 

First, the coefficients of eqn. (1) were evaluated for Si, Ge, Sn and Pb, by 
applying the linear regression method directly to eqn. (1) with P (eqn. 3) 
values as issued vapour pressure values, at temperatures 1700, 1800,. . . ,250O 

K. Optimised values of (Y, j3, y and D coefficients, for all the elements 
studied are given in Table 1, together with the values for the corresponding 
correlation coefficient of the eqn. (1) linear regression that was calculated 
using the expression 

r(1) = 
po(--f)+vo(T)+Do(lnT) 

o(ln P) 

where a2( X) represents the variance of x[ - l/T, T, In T, In P]. In Table 1 
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TABLE 1 

Values of coefficients in the equation a InP=a--_p/T+yT+DlnT optimised by the 
least-squares method 

Element (Y p x 10-4 yx105 D - 1 [I- r(l)1 

(K) (Km’) 

Si 59.2150 5.3834 14.0 - 5.9218 0.996 

Ge 2.7443 3.9051 - 3.0 1.3874 0.995 

Sn 6.4572 3.4756 -1.0 0.7529 0.998 

Pb 26.9946 2.3778 5.0 - 2.1363 0.998 

a P is in Pa and Tin K. 

r(1) values are given through the degree of correlation defined as 1 - 11 - 

r(I) I* 
The same coefficients from the same issued, P (eqn. 3) values were derived 

using the following procedure. 
The saturated vapour of any of the elements analysed, as a mixture of 

atoms E, and molecular species Ei, is treated as a monatomic-particle real 
gas, whose volumetric behaviour is described by a truncated form of virial 
equation 

u=Jg+B (8) 

From Woolley’s statements for this case [ll] it follows that the tempera- 
ture dependence of B has to be represented by equation 

B= -aTexp$, 

where the parameter b is defined by the relation 

bR = A&‘( E2) 

where A,@( E2) is the standard enthalpy of dimer dissociation. 

(10) 

On the basis of eqn. (7) the fugacity coefficient of the saturated vapour is 
given by 

],f,BP 
P RT (11) 

so the developed third-law expression for A,H$( E,) has the following form 

A,H~(III) = TAV@ - RT I,$ - BP (12) 

The developed A v Ht( E, ) second-law expression 

A&‘(H)= -Av(Z+H,U)+(~+yT+D~(RT+BP)-y 

is obtained with the aid of eqns. (1) (lo), (11) and (13). 

03) 
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On the basis of eqns. (1) (9), (12) and (13) the numerical procedure for 
the evaluation of the coefficients in eqn. (1) was established. The procedure 
has included following steps: 

(1) calculation of issued vapour pressure values, P (eqn. 3) values, by 
means of eqns. (3)-(7); 

(2) calculation, for a set of temperatures, with P (eqn. 3) values, the 
absolute values of the second virial coefficient, through the following expres- 

sion 

IBI = 

AVHi - TA.Q, + RT ln$ 

P (14) 

(3) evaluation of the values of the parameters a and b, by applying the 

15) 

linear regression method to the logarithmic form of eqn. (9) 

lnH=lna+b 
T T ( 

(4) calculation, for all the temperatures, of the values of the function 

a,H,o+A@-Hi)-5 

A4 

M= 
1 

RT+ BP (16) 

that is related, through eqn. (13) to the coefficients j3, y and D by the linear 
equation 

P IW=~+~T+D 

(5) evaluation of the parameters p, y and D, by applying 
regression method to eqn. (17), M (eqn. 16) values being used; 

(17) 

the linear 

(6) calculation of the (Y parameter mean value from thus obtained /II, y and 
D values and P (eqn. 3) values, via eqn. (1). 

The described procedure was applied to Si, Ge, Sn and Pb, for five 
temperatures in the range 1700-2500 K. For this purpose thermodynamic 

TABLE 2 

Values of coefficients in the equation a In P = a - p/T + yT + D In T optimised in the new 

procedure 

Element 

Si 
Ge 
Sn 
Pb 

a px10-4 yx106 D 1 - II- r(l)1 

(K) (K-‘) 

25.93735 4.75569 7.8 - 0.0857 0.9982 

24.55975 4.03523 6.0 0.0263 0.9998 

21.63072 3.52430 0.2 0.2746 0.9999 

22.98408 2.17124 17.8 - 0.0986 0.9990 

a P is in Pa and T in K. 
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function data from ref. 12, that include CODATA recommended values for 
AVHt [13], were used. Obtained values for eqn. (1) coefficients, as well as 
corresponding degrees of correlations for all the treated elements are sum- 
marised in Table 2. 

The vapour pressure predictability of eqn. (1) with coefficients optimised 

TABLE 3 

Deviations between P (eqn. 1) and P (eqn. 3) values for silicon 

Temperature Vapour SiO, SPMa fS(8PM) SP,"fs(6P,) 

(K) pressure content or 6P, or SP, 

(pa) (W) (W) 6) 

1690 5.91 x lo-* 2.69 0.11 6.95 
1700-2500 6.98 x lo-*-525 x lo* 2.75-9.01 0.11 & 0.09 9.72 f 1.57 
3000 1.23 x lo4 12.94 0.17 17.90 
3500 1.17x105 16.26 0.50 30.06 
4000 6.32 x 10’ 18.88 2.47 50.70 

’ SP = [P (eqn. l)- P (eqn. 3)1/P (eqn. 3)x100 the index M denotes P (eqn. 1) values 
calculated with coefficients optimised by the new procedure, and the index D denotes P 
(eqn. 1) values calculated with coefficients optimised by the least-squares method. 

TABLE 4 

Deviations between P (eqn. 1) and P (eqn. 3) values for germanium 

Temperature Vapour Ge2 6P,f s(SP,) SP,fs(SP,) 
(K) pressure content or SP, or 6P, 

(Pa) (S) (W) (%) 

1210 1.8 x 1O-4 0.52 1.57 9.76 
1700-2500 2.80 x loo-5.64x lo3 3.01-9.80 0.07 f 0.06 10.42 + 1.42 
3000 8.31 x lo4 13.75 1.04 14.35 
3500 5.63 x lo5 17.78 2.50 15.41 
4000 2.35 x lo6 19.25 4.57 15.67 

TABLE 5 

Deviations between P (eqn. 1) and P (eqn. 3) values for tin 

Temperature Vapour Sn2 SP, + s(6P,) 6P,ks(SP,) 

(W pressure content or SP, or 6P, 

(pa) (X) (%) 6) 

1000 8.48 x 1O-6 0.004 3.68 0.60 
1700-2500 18.97-1.60x lo4 0.46-3.11 0.06 + 0.04 3.29 k 0.44 
3000 1.76 x lo5 5.60 0.55 5.05 
3500 9.69 x lo5 8.12 1.90 6.51 
4000 3.46 x lo6 10.33 4.19 8.46 
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TABLE 6 

Deviation between P (eqn. 1) and P (eqn. 3) values for lead 

Temperature Vapour Pb, SP, * S(8PM) Go* s(SP,) 

6) pressure content or 6P, or 6P, 

(Pa) (%) (%I ($) 

1200 64.32 0.04 4.96 0.47 
1700-2500 1.35 x 104-7.83 x lo5 0.56-3.86 0.15 f 0.06 2.12kO.27 
3000 3.34 x 10” 7.02 1.26 3.16 
3500 9.60 x lo6 10.23 3.92 3.35 

by the two methods described was estimated through calculated (relative) 
deviations between P (eqn. 1) and P (eqn. 3) values (Tables 3-6). 

DISCUSSION 

In the optimisation temperature range (1700-2500 K) the average estab- 
lished deviations between calculated vapour pressure values P (eqn. 1) and 
original values P (eqn. 3) for lead and tin are 2 and 3%, respectively (Tables 
5 and 6), while SP values for silicon and germanium are about 10% (Tables 3 
and 4), provided the parameters of eqn. (1) are optimised by the least-squares 
method. From these results it follows that the predictability of eqn. (l), with 
coefficients optimised by the linear regression method for Sn and Pb can be 
accepted as satisfactory. This is not the case for Ge and Si. 

When in computations of P (eqn. 1) values the coefficients obtained in 
our procedure are used, deviations in vapour pressure values in the optimisa- 
tion temperature range are lower than 1% (Table 3 and 4). It was noted that 
the values of the degree of correlation (1 - 11 - r(1) I) for our procedure 
(Table 2) were higher than corresponding values obtained using coefficients 
of eqn. (1) optimised by the least-squares method (Table 1). 

Improvement of vapour pressure predictability, in the optimisation tem- 
perature range, obtained by our procedure in relation to that of linear 
regression optimisation, is evident, in spite of the fact that in our procedure 
the number of points used (five temperatures) was lower than in the case of 
the linear regression (nine temperatures). However, the practical meaning of 
this improvement is important only for silicon and germanium. 

Also the vapour pressure predictability of eqn. (1) was considered with 
coefficients optimised by both methods outside the optimisation temperature 
range, by calculating the deviations between P (eqn. 1) and P (eqn. 3) values 
(Tables 3-6). From results obtained the same could be concluded as for the 
optimisation temperature range. The predictability of eqn. (1) with coeffi- 
cients optimised by our procedure is higher than with coefficients optimised 
by the least-squares method. Even when the departure from the optimisation 
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temperature range is higher, the reliability of P (eqn. 1) values with coeffi- 
cients optimised by the linear regression method decreases progressively, 
especially for Si and Ge. On the other hand, the range of applicability of 
eqn. (1) with our coefficients can be extended up to 1210 and 4000 K for Ge 
(the range of liquid Ge from its melting point to 4000 K) and to 4000 K for 
Si. Since the melting point of Si lies at 1690 K, the extension of applicability 
of eqn. (1) toward lower temperatures is not possible. 

From the calculated deviations in vapour pressure values it is possible to 
evaluate the essential difference concerning the extension of the temperature 
range of applicability of eqn. (1) depending on the method of coefficients’ 
optimisation. When the least-squares-optimisation coefficients are used, de- 
viations between P (eqn. 1) and P (eqn. 3) values gradually increase 
especially at higher temperatures, with a departure from the optimisation 
temperature range. This is not the case with coefficients evaluated in our - 
procedure. Deviations 6P, are slightly worse outside the optimisation tem- 
perature range than inside it; this rise is not connected with the departure 
from the optimisation temperature range, but with the conditions under 
which the truncated form of the virial equation (eqn. 8) and the Woolley 
model [l] are no longer appropriate for saturated vapour. 

Relating the parameters of saturated vapour (E, content, vapour pressure) 
and vapour pressure predictability of eqn. (1) with parameters optimised by 
our procedure or by the linear regression method, we can conclude that for a 
higher dimer content, predictability with coefficients optimised by the least- 
squares method is low (Tables 3 and 4). If, under these conditions, coeffi- 
cients optimised in our new procedure are used, deviations in vapour 
pressure values are remarkably lower. Improvement in the predictability of 
eqn. (1) with our coefficients for high E, content diminishes only at high 
vapour pressures. Therefore, the new procedure was proposed for the evalua- 
tion of coefficients of vapour-pressure temperature dependence for liquid 
silicon and germanium. 

When clusterization is insignificant in a saturated vapour, as in the 
saturated vapour of tin and lead at low vapour pressures (lower than 0.5 
MPa), the application of the proposed procedure for the improvement of the 
predictability of eqn. (1) is unjustifiable and inefficient. 

CONCLUSION 

With vapour pressure values given as sums of partial pressures of E, 
species present in a saturated vapour in the temperature range 1700-2500 K, 
the coefficients of Rankin-Kirchoff equations for Si, Ge, Sn and Pb are 
derived using the least-squares method. 

On the basis of deviations in vapour pressure values, the optimised 
coefficients for Sn and Pb can be accepted as reliable while the predictability 
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of the Rankin-Kirchoff equation for Si and Ge with coefficients optimised 
through the linear regression method is not satisfactory. 

A new, efficient, procedure for optimisation of coefficients in the 
Rankin-Kirchoff equation, representing vapour-pressure temperature de- 
pendencies, is developed by introducing into the computation two thermody- 
namically consistent equations. Both of these equations are developed from 
rigorous thermodynamic expressions (third- and second-law expressions for 
A,@) on the basis of the approach in which the volumetric behaviour of a 
gas mixture, consisting of atoms E, and molecular species E;, has to be 
described by a virial equation of a real monatomic gas. 

With the coefficients optimised during this procedure the equations of 
Rankin-Kirchoff type for silicon 

47556 x 9 
In P=25.9374- T + 0.0000078T - 0.0857 In P 

and for germanium 

In P = 24.5598 - 
40352 x 3 

T + 0.000006T + 0.0263 In P 

where P is in Pa and T in K, possess very good vapour pressure predictabil- 
ity for the whole temperature range of the liquid state, from the melting 
point up to temperatures at which the vapour pressure reaches values of 0.5 
MPa. 

LIST OF SYMBOLS 

P 

r”’ 
u 
T 
R 
B 
H 
L 
0 
M 
a, P, Y, D 
a, b 
KPi 
E 
6(x) 
s(x) 

pressure 
partial pressure 
fugacity 
molar volume 
temperature 
gas constant 
second virial coefficient 
enthalpy 
latent enthalpy of vaporization 
free energy function, - GF - Hi/T 
mathematical function 
vapour pressure temperature dependence coefficients 
parameters of virial coefficient temperature dependence 
equilibrium constant 
element, E[Si, Ge, Sn, Pb] 
relative deviation 
standard deviation 
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fJ2(x) variance 
r correlation coefficient of linear regression 

Superscript 

0 standard state 

Subscripts 

d 

;, 
V 

m 
M 
D 

dissociation 
molecular species 
reference temperature 
vaporization 
melting point 
results obtained with coefficients optimised in new procedure 
results obtained with coefficients optimised by the least-squares 
method 
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